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Abstract: Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor 

cells that can be obtained from bone marrow and adipose tissue. Due to the ability of MSCs 

to migrate to damaged and cancerous tissue, this behavior of MSCs has been exploited as a 

tumor-targeting strategy for cell-based cancer therapy to improve the efficacy and minimize 

the toxicity of current gene therapy approaches in the treatment of cancers. In this review, 

we focus on the current developments of MSC-based gene therapy in gastrointestinal cancer 

studies, in particular, the role of MSCs as tumor-targeted therapy vehicles and the prospects in 

their clinical application.
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Introduction
Mesenchymal stem cells (MSCs) are a group of heterogeneous multipotent cells, 

which can be isolated from many tissues such as bone marrow,1 peripheral blood,2 and 

adipose tissue.3 These do have the potential to treat a wide range of diseases.4 MSCs 

have the same self-renewal characteristics as undifferentiated cells and are character-

ized as adherent cells that have the ability to differentiate into osteocytes, fibroblasts, 

adipocytes, chondrocytes, and marrow stroma.1,5 For their regenerative potential and 

immune-suppressive capacity, MSCs can be used in regenerative medicine,6,7 tissue 

transplantation,8–10 and cancer therapy.4,11

The surface markers to identify MSCs are different among these cells because 

they originate from different tissues or are cultured in different conditions.12,13 The 

Mesenchymal and Tissue Stem Cell Committee of the International Society proposes 

minimal criteria to define human MSCs for MSC therapy, which have to fulfill a 

standardized phenotype for cellular therapies.14 These criteria include the expression 

of CD105, CD90, and CD73, but not CD79a, CD45, CD34, CD19, CD14, CD11b, 

and HLA-DR.5,15,16

The migration of MSCs to tumor
A number of studies have shown that MSCs do migrate to sites of injury, ischemia, 

and tumor microenvironments. The mechanisms by which MSCs migrate across the 

endothelium and home to the target tissues are not yet fully understood. It may be 

related to the MSC receptors, the target tissue, and the cell surface receptors. It is shown 

that homing of MSCs is dependent on chemokine receptors such as CXCR4, c-Met, 

VEGFR, PDGFr, and CCR2. SDF-1, and its receptor CXCR4 have been previously 
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characterized in MSC homing.17–21 It has been shown that 

freshly isolated MSCs have the best homing ability, and their 

homing efficiency gets worse with rising passage numbers.22 

Some studies demonstrated that the use of cytokines (IL 

[interleukin]-6, IL-1β, hepatocyte growth factor [HGF], etc) 

to pretreat the cultured MSCs will enhance the expression 

of chemokines and increase the homing effect of MSCs.23–25 

Several studies also suggest that MSCs are attracted to sites 

of irradiation.26–28 In a recent study, François et  al28 used 

total body irradiation (TBI) with or without additional local 

irradiation to research the potential therapeutic efficacy of 

MSCs for irradiation damage. They found that not only did 

TBI induce an increase of engraftment levels of human MSCs 

(hMSCs) in the brain, heart, bone marrow, and muscles, 

but also more MCSs migrated to the exposed area of local 

irradiation after TBI as compared to TBI alone.28

MSCs in gastrointestinal cancer 
therapy
The biological function of MSCs on 
cancer
In a number of studies, MSCs have been shown to migrate to 

the tumor site and demonstrate antitumor effects both in vitro 

and in different cancer mouse models.29 Kidd et al30 observed 

that in an in vivo model of pancreatic cancer, intraperitoneally 

injected hMSCs migrated to primary and metastatic tumor 

sites and potentially inhibited tumor growth. Maestroni 

et  al31 also showed that coinjection of mouse MSCs with 

tumor cells can decrease the tumor volume. In some studies 

for hepatocellular cancer (HCC), MSCs were able to inhibit 

the tumor growth in vivo and decrease the cell proliferation 

while increasing apoptosis via downregulation of NFκB- or 

Wnt-signaling pathways.32,33

However, several other studies with different types of 

tumors have demonstrated that MSCs can promote tumor 

growth or metastasis and are related to the formation of 

tumor-supporting stroma.34–36 More specifically, it has been 

reported that nontherapeutic MSCs enhanced tumor growth 

on HCC cells in vivo.37 Similarly, Zhu et al38 showed that 

MSCs could enhance the invasive capacity of cancer cells via 

extensive angiogenesis and tumor cell protection of immune 

cell recognition.39

Furthermore, MSCs appear to have a complex biology. 

Li et al40 reported that hMSCs could significantly enhance 

tumor growth in vivo in a HCC subcutaneous model, but 

decrease the number of lung metastases, while the same 

cell type enhanced proliferation but inhibited invasiveness 

in vitro. It has also been shown that the promoting role of 

hMSCs on esophageal cancer growth in vivo was related to 

an increase of tumor vessel formation, whereas MSCs were 

found to inhibit proliferation and invasion of esophageal 

cancer cells in vitro.41 Thus, the role of MSCs seems to be 

controversial in carcinogenesis.

The use of MSCs as tumor-targeted 
therapy vehicles
In recent years, there has been considerable interest in the use 

of MSCs as delivery vehicles for antitumor drugs, proteins, 

and other therapeutic agents because of the homing abilities 

and the fact that MSCs can evade host immune response.42 

The systemic use of these biologic agents in cancer therapy 

is generally limited due to their short biologic half-life and 

toxicity at the required therapeutic dose (Table 1).43

Immunostimulatory agents
IL-12 is a pleiotropic cytokine that exerts potent antitumor 

activity and creates an interconnection between the innate 

and adaptive immunity.44,45 Three kinds of tumor models 

containing melanoma, Lewis lung cancer (LLC) and HCC 

were established by Chen et al;46 they injected IL-12 gene-

engineered MSCs into the C57BL/6 and BALB/c mice 

before tumor cell inoculation. Then the mice were divided 

into three groups with 12 mice per group. There were only 

three mice in all three groups that presented a tumor (one 

in the HCC group and two in the LLC group), while almost 

all mice without IL-12-gene-engineered MSCs developed 

tumors.46 IL-15 is a cytokine with structural similarity to 

IL-247 and can rapidly be released by tumor-associated 

and tumor-infiltrating macrophages induced by IL-12.48,49 

This could be a tool for cancer immunotherapy because 

of the effect of maintaining long-lasting T-cell antitumor 

immunity.50–52 Jing et al53 found out that IL-15-transduced 

MSCs could inhibit tumor growth and prolong the survival 

of mice that bear pancreatic tumors by inducing natural 

killer (NK) cell and T-cell accumulation. The cytokine 

interferon (IFN)-β is known to have potent proapoptotic 

effects and is capable of inhibiting both tumor growth 

and angiogenesis.54,55 Kidd et al30 showed that engineered 

hMSCs expressing IFN-β are able to produce the biological 

agents locally at the tumor site and in this way inhibit the 

growth of pancreatic cancer in vivo.

Prodrug
Prodrugs are inactive compounds, which convert nontoxic 

prodrugs into toxic antimetabolites to produce a toxic 
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antitumor effect. It has been shown that prodrugs possess 

some advantages over conventional drugs, such as increased 

solubility, improved permeability and bioavailability, reduced 

adverse effects, and prolonged half-lives.56 You et al engi-

neered human adipose tissue-derived MSCs to express the 

suicide gene cytosine deaminase::uracil phosphoribosyl-

transferase (CD::UPRT) which can convert the relatively 

nontoxic 5-fluorocytosine (5-FC) into the highly toxic 

antitumor 5-fluorouracil (5-FU).57 It has been demonstrated 

that hMSCs express the prodrug-activating enzyme CD that 

is able to convert the prodrug 5-FC into 5-FU, which shows 

anticancer therapeutic potential in vitro and in vivo.57 The 

combined use of the prodrug ganciclovir (GCV) and thymi-

dine kinase of the herpes simplex virus (HSV-Tk) is com-

monly used in antitumor therapy. GCV is an analog nucleotide 

that can be phosphorylated into a monophosphate GCV by 

HSV-Tk. So when cells are transfected with the HSV-Tk gene, 

endogenous kinases will then change the monophosphate 

GCV into the active bi- and triphosphate GCV, which will 

block the cell cycle and induce apoptosis through inhibiting 

DNA synthesis.58–60 Furthermore, transfected MSCs exposed 

to GCV can kill adjacent tumor cells via bystander effect; 

this effect is reliant on the transfer of monophosphate GCV 

between cells via gap junctions.61,62 Recently, our group 

found that engineered MSCs expressing HSV-Tk under the 

control of the CCL5 or Tie2/Tek promoter could significantly 

inhibit the growth of pancreatic,35,36 breast,35 and hepatocel-

lular carcinoma37 as well as incidence of metastases in vivo. 

CCL5 act as chemoattractant and is associated to increased 

tumor neovascularization. The Tie2/Tek gene encodes an 

angiopoietin receptor tyrosine kinase, essential for blood 

vessel formation.35–37

Cytotoxic agents and growth factor antagonists
Tumor necrosis factor-related apoptosis-inducing ligand 

(TRAIL), a member of the TNF family, is considered as 

a potential agent for cancer therapy due to its ability to 

induce apoptosis in a variety of cancer cells without affect-

ing the majority of normal human cells.43 In recent studies, 

engineered MSCs were used as a vehicle to deliver TRAIL 

that lead to colorectal,63–65 pancreatic,65,66 and HCC67–69 cell 

apoptosis and death in vitro and were able to significantly 

reduce tumor growth in vivo. HGF is a heterodimeric 

molecule, which promotes tumor growth, and is also a 

mesenchymal or stromal-derived mediator with angiogenic 

activity. As an antagonist of HGF receptors, NK4 inhibits cell 

proliferation and induces apoptosis through antagonizing 

the HGF70 and promotes antiangiogenic activities through 

the competitive inhibition of angiogenic growth factors 

to endothelial cells.71 In a gastric cancer study, Zhu et al72 

found that MSCs transduced with NK4 could obviously 

inhibit the growth of gastric cancer in vivo by decreasing 

the microvessel density of tumor xenografts and by inducing 

apoptosis of tumor cells.

Table 1 Selected preclinically engineered MSC-based cancer therapy studies in gastrointestinal cancers

Transfected products MSCs Tumor Effects

Immunostimulatory agents
 I L-12 Mouse BM-MSCs (intraperitoneal) Hepatocellular carcinoma46 Tumor prevention
 I L-15 Human UC-MSCs (iv) Pancreatic cancer53 Inhibit tumor growth and prolong 

survival
 I NF-β Human BM-MSCs (iv) Pancreatic cancer30 Inhibit tumor growth
Prodrug
  CD/5-FC Human BM-MSCs (iv) Gastric cancer57 Inhibit tumor growth
  TK/GCV Mouse BM-MSC (iv) Pancreatic cancer35,36 Inhibit tumor growth, prolong 

survival, and reduce liver metastases
Hepatocellular cancer37 Inhibit tumor growth

Cytotoxic agents
  TRAIL Human BM-MSCs (coimplantation  

with tumor cells sc)
Colorectal cancer63 Inhibit tumor growth

Human BM-MSC (iv) Colorectal cancer64 Inhibit tumor growth
Human AT-MSCs (iv) Colorectal cancer65 Inhibit tumor growth
Rat BM-MSCs (sc) Hepatocellular cancer67 Inhibit tumor growth and prolong 

survival
Human UC-MSCs (iv) Hepatocellular cancer68 Inhibit tumor growth

Growth factor antagonists
  NK4 Human BM-MSCs (iv) Gastric cancer72 Inhibit tumor growth

Abbreviations: BM-MSCs, bone marrow-derived mesenchymal stem cells; UC-MSCs, umbilical cord-derived MSCs; AT-MSCs, adipose tissue-derived MSCs; iv, intravenous; 
sc, subcutaneous; MSCs, mesenchymal stem cells.
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Synergistic approaches utilizing MSCs 
combined with radiation therapy
The irradiation technique has resulted in a wide application 

of radiation therapy in gastrointestinal cancer. It is known 

that radiation therapy is associated with radiation exposure 

of surrounding healthy tissues and the development of acute 

injury, followed by late structural and/or functional damage.73 

Recent studies showed that local irradiation not only induced 

homing of MSCs at exposed sites but also promoted their 

widespread engraftment to multiple organs.28 Chapel et al74 

further found a potential role of the MSCs contribution to 

the repair process in various tissues after irradiation. Zielske 

et al75 demonstrated that the radiation-induced injury could 

be used to target MSCs to tumors, which might increase the 

effectiveness of MSC cancer gene therapy. These findings 

suggested that radiation therapy combined with the MSCs 

was able to increase the therapeutic efficacy. A novel applica-

tion was shown by Knoop et al76 in an HCC xenograft mouse 

model by using sodium–iodide symporter (NIS) MSCs as an 

ideal gene delivery vehicle. Three cycles of systemic MSC-

mediated NIS gene delivery followed by 131I  application 

resulted in a significant delay in tumor growth.76 Therefore, 

the combined application of irradiation and MSCs should 

promote the therapeutic potential of engineered MSC cancer 

therapy without a damage of irradiation on MSCs,77 and the 

continued irradiation after the treatment of MSCs might 

improve the effective duration and extend the treatment 

cycle as well.

Conclusion
Stem cell transplantation has gained considerable interest 

during the past decade, as an alternative therapeutic tool 

in regenerative medicine and anticancer treatment. Several 

issues related to MSC therapy still remain unknown and 

are urgently needed to be defined: cellular mechanisms, 

precise operating method, and timing of MSC application. 

MSCs can easily be obtained and maintained. They do 

migrate to the sites of injury, ischemia, and tumor and have 

immunoprivileged properties that rely on the surrounding 

microenvironment. These functions are not only related 

to different cytokines and receptors, but also to cell–cell 

interaction. Therefore, MSCs can be used as vehicles for 

tumor-targeting therapies that might overcome the limitations 

of existing cell therapy approaches, which cannot inhibit 

the tumor precisely and specifically. There are a number of 

clinical trials utilizing MSCs for cancer therapy (Tables 2 

and 3). Some of them start to use engineered MSCs, though 

most of these trials still use normal MSCs. In a recent clinical 

trial, genetically modified autologous MSCs from eligible 

patients will be used to treat advanced gastrointestinal or 

hepatopancreatobiliary adenocarcinoma.71

The safety of MSC utilization must be considered and 

will be the major hurdle for their practical use in clinical 

settings due to the dual effects of MSCs concerning tumors. 

There is still the necessity to proceed with more studies to 

demonstrate the specific mechanisms concerning the relation 

between MSCs and tumors.

Table 2 Clinical cancer trials utilizing therapeutic MSCs registered in the US National Institute of Health

Identifier Title Condition Enrollment Phase

NCT01983709 Allogeneic human bone marrow-derived  
mesenchymal stem cells in localized prostate  
cancer (MSC)

Prostate cancer Currently recruiting 
participants

Phase I

NCT01275612 Mesenchymal stem cells in cisplatin-induced  
acute renal failure in patients with solid organ  
cancers (CIS/MSC08)

Solid tumors  
Acute kidney injury

Currently recruiting 
participants

Phase I

NCT01854567 P3 study of umbilical cord blood cells  
expanded with MPCs for transplantation in  
patients with hematologic malignancies

Acute myelogenous leukemia 
Acute lymphoblastic leukemia 
Non-Hodgkin’s lymphoma 
Hodgkin’s disease

Currently recruiting  
participants

Phase III

NCT00790413 Haploidentical stem cell transplantation in  
neuroblastoma

Neuroblastoma Currently recruiting 
participants

Phase 0

NCT02068794 MV-NIS-infected mesenchymal stem cells in  
treating patients with recurrent ovarian cancer

Ovarian cancer Ongoing, but not  
recruiting participants

Phase I/II

NCT00408590 Recombinant measles virus vaccine therapy and  
oncolytic virus therapy in treating patients with  
progressive, recurrent, or refractory ovarian  
epithelial cancer or primary peritoneal cancer

Ovarian cancer 
Primary peritoneal cavity  
cancer

Ongoing, but not  
recruiting participants

Phase I

NCT02079324 Genetically modified mesenchymal stem cell  
therapeutic against head and neck cancer (GX-051)

Head and neck cancer Ongoing, but not  
recruiting participants

Phase I

Abbreviations: MPC, mesenchymal progenitor cells; MSC, mesenchymal stem cell; MV-NIS, measles virus encoding the thyroidal sodium–iodide symporter.
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